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The k-calculus Approach and the
Generalized Lorentz Transformations

S. Markov

1 Introduction

In [1] J. Winnie develops the consequences of the Special Theory of Relativity (STR)
when no assumptions are made concerning the one-way velocity of light. He weakens
the Second Postulate of STR to the so-called Round-trip Light Principle (RTLP),
which is consistent with the Reichenbach-Griinbaum thesis of the conventionality
of simultaneity. The RTLP requires the average round-trip speed of light to be ¢
whereas the one-way speed of the light signals is allowed to depend on the conven-
tional choice of a parameter €.

Winnie’s model [1] based on the Relativity Principle and on the RTLP we shall
further refer to as e-STR. As Winnie shows e-STR is equivalent to STR as regards
the results based on experiments with light signals propagating in a closed path
(so-called two-way experiments). The quantities and relations which do not depend
on the particular choice of ¢ we shall call (as Winnie does) synchrony-independent.

The purpose of this paper is twofold. First, we note that H. Bondi’s definition of
chronometric motion [2], as being based on an one-way thought experiment, might
contain a conventional ingredient. In order to use this definition separately from
STR, we restate the definition by basing it on a two-way experiment. Then the
k-calculus approach [2, 3] is systematically exploited in e-STR, mainly in order to
discuss the synchrony-independence of certain quantities and results. Deriving the
general Lorentz formulae we use an approach which might have some methodologi-
cal advantages. Such an inductive approach is often used in modern mathematical
modelling. Tt consists of i) proper choice of the general form of the mathematical
relations which map the physical reality and ii) determination of the parameters
in these relations on the basis of certain physical assumptions. Such an approach
to Special Relativity can be found in the textbook [4]. As it is significant for this
approach to distinguish the physical concepts from the mathematical ones, we use
throughout the paper different types of notations (boldface upper case for the phys-
ical objects and italics for the mathematical concepts).

Second, we note the fact that the RTLP contains the assumption that the velocity
of light does not depend on the velocity of the source. Our approach allows us to
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study easily the consequences of the assumption that such a dependence exists; let us
note that the experiments of Michelson-Morly type does not reject this dependence
and that the direct one-way experiments (in high vacuo) performed in the recent
years might not be regarded as crucial [5, 6]. Among the hypotheses permitting the
dependence of the velocity of light on the velocity of the source (in vacuo), the most
popular is that of Ritz, which states that the velocity of light is equal to a constant
as regards the source. Our approach to deriving the Lorenz transformations allows
to see easily how the transformations look like when Winnie’s formulation of the
Relativity Principle and the Ritz hypothesis are taken together as physical basis.

2 The k-calculus Approach

Let S and S’ be two inertial frames of reference moving relatively in a standard
position. We confine our attention throghout the paper to events on the x-axes of the
frames involved. Denote by K and K’ the corresponding two-dimensional coordinate
systems. (The mathematical relations between K and K’ will be discussed later on.)
To each physical event P we associate two pairs of real numbers: (x,t) as regards
K and (2/,t') as regards K’; x shows the place of the event P on the z-axis of S, t
shows the time by the clock U, fixed at that place at rest in S, etc. The motion of
a point A can be considered as a set of events; its geometrical image is then a point
set Wy called world-line of A.

H. Bondi [2, 3] suggests an experiment with light signals for identifying a certain
class of motions called by him chronometric. Consider two observers O and O’
moving on a straight line. By means of a radar O sends two signals in succession to
O’; let T be the time interval between the instances of the dispatching of the signals
(by Up). The observer O reads (by his clock Uy a time interval 7" between the
instances of receiving the signals. It is also assumed that while this experiment,
which we shall denote by E, takes place, O and O’ do not pass each other. Then
the definition given by Bondi can be stated as follows:

Definition 1. Let O and O’ be in relative motion and let for any experiment E the
intervals 7" and 7" relate as
(1) T = kT,

where k is constant in time independent of 7. Then we say that O’ moves chrono-
metrically with respect to O with coefficient of chronometry & (or O' moves k-
chronometrically with respect to O).

The experiment E assumes reading of time by two clocks in relative motion,
which means that we have to know the way the clocks are synchronized. This
concerns the hypothesis assumed about the one-way speed of light and eventually
makes difficult to see whether k is synchrony-independent or not. That is why let
us consider another thought experiment.
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Let the observer O dispatch again two signals in succession to O’ and read
between them time 7' (by his clock Up). The signals reflect from O" and return
to O. Let then 7" be the time interval (again by Up, which O reads between the
instances of receiving the reflected signals. This experiment we shall denote by E*.

Definition 2. If for any experiment E* between the time intervals 7" and 7" the
relation

(2) T" = k*T

holds, where k is a constant in time, we shall say that O’ moves k-chronometrically
with respect to O.

In the experiment E* all the readings are made by one clock. Thus Definition 2
allows to determine (on principle) the chronometricity of a motion using one clock
and also independently of any one-way hypothesis.

It is easy to see that the two definitions are equivalent in STR in the sense that
either of them follows from the other. In Section 5 we show that both definitions
are also equivalent in e-STR which means that the coefficient k is a synchrony-
independent quantity.

Let O be the origin of the frame S and let the point O' move in the positive
direction of S chronometrically with respect to O (according to Definition 2). Sup-
pose that Q" approaches O, then passes “through” O (at some instant to by Up)
and with unchanged velocity recedes from O. Obviously, the chronometry coeffi-
cient measured before O and O’ pass is less than one and the coefficient measured
after they pass is greater than one. The coefficient of chronometry measured by
approaching we denote by k, and by k, when measured by receding.

Consider the case when O’ recedes from O chronometrically with coefficient k.,
after passing O at the instant ¢, (by Up). Assume that O sends the first signal to
O’ at the instant ¢, and the second signal — at some instant ¢; > t,. Then the first
signal is received back again at ¢y (we assume that when O and Q" “coincide” the
time for the to- and fro- signals is zero). Let the second signal return to O at the
instant o (by Up). When we substitute T = ¢; — ¢ty and 7" =t — ty in (2) we get

(3) ty —to = k2(t; — to).

Denote by ¢ and ¢ the velocities of the light signals moving in the positive and
in the negative direction of S, respectively. Denote by (z,t) the event of reflection
of the second signal from O’. We have then t; = ¢ — x/ ¢, and t5 =t + 2/ ¢ which
substituted in (3) gives z = [(k2—1)/(¢ ' + ¢ k2)](t—to). Thus the world-line of
O’ with respect to K is a straight line; the constant factor in the above expression
presents the velocity vy of O with respect to S.

Considering the case when O" approaches O chronometrically with coefficient &,
(moving again in the positive direction of S) we obtain v, as a function of k,. The
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following formula contains the two expressions for v,

1— k2 21
4 I a = T .
) T re e clpet R

This formula relates the chronometry coefficients of one moving object measured
before and after passing the observer. As far as k, and k. can be determined (at
least on principle) by means of the experiment E*, it turns out that (4) presents a
relation between the velocities ¢ and ¢ (any conventional choice of ¢ determines
uniquely ¢).

For the case of a chronometric motion in the negative direction (again with
chronometry coefficients k, and k, respectively) we get for the velocity v_ of the
moving object similarly

1— kg k? —1
c +c k2 ¢ +c

1

k2

3 The Principle of Linearity and the Principle of
Relativity

In this section we shall consider results based only on the Principle of Linearity and
on the Principle of Relativity. The Principle of Linearity can be stated as follows.

Principle of Linearity. For any two inertial frames S and S’ any point in
inertial motion with respect to S is also in inertial motion with respect to S’ and
conversely.

We shall assume (as Bondi does) that the concept of chronometric motion in our
kinematical model is identical to the concept of inertial motion in dynamics. As we
have seen each chronometric motion is presented by a world-line of linear form with
respect to K and K’. It is well known that the Principle of Linearity leads to linear
transformation formulae between K and K’ (which transform linear functions into
linear functions). Let these formulae be of the form

(6) r = ax + 0t +a,
t = pa’ +~t' +0b,
where «, (3, ... are six constants, independent of the choice of P.
The six constants in (6) determine the way K’ lies in the plane with respect to
K — the pairs (a,b), (a, 8) and (8,7) are coordinates of the origin O" and the two
unity vectors of K’ with respect to K. Our next aim is to determine these constants.
We make the standard stipulation that when O and O pass each other their

clocks Up and Uy, both read time zero. Thus the event (0,0) with respect to K
has coordinates (0,0) with respect to K" and that implies a = b = 0.
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The world-line of the origin O’ of S’ is x = v, t with respect to K and 2’ = 0
with respect to K’. Applied to (6) this gives § = v,v. Thus the transformation
formulae (6) become

(7) v = ar' +ut, o' = (z —vst) /(o — vy P),
or
= B At ' = (at - B2)/ (1@ — v, ).
Consider a set of consecutive events F;, i = 1,2, ..., at some fixed place 2’ in S’,

E; = (2',t]), t; < t,,. Let E; have coordinates (x;,t;) with respect to S (which can
be obtained by (7)). We make the assumption that ¢; also increase, i. e. t; < t;11.
This means that ¢ = G2’ + vt is an increasing function of ¢ when 2’ is fixed. In
other words, we assume that v > 0.

Next we are going to see what is the restriction on the coefficients implied by
the Relativity Principle. Winnie formulates the Relativity Principle in a form inde-
pendent of the conventional choice of the one-way speed of light ([1], p. 230). We
are going to show that the Relativity Principle (as formulated in [1]) bounds the
coefficients in (7) to the relation y(a — vyf3) = 1. We shall note that Winnie’s
formulation of the Relativity Principle (called by him Principle of Equal Passage-
Times) is substantially different from other formulations; the standard formulation
(see, for example, [7]) implies the relation o(a — vy 3) = 1. The Relativity Principle
is formulated by Winnie as follows:

Relativity Principle. Let A and A’ be two arbitrary points on the z-axes of
S and S', respectively. Let At be the time interval by the clock Uy (in S) of the
passage of a rod at rest in S’ of length d (in S) past the point A, and let At’ be
the time interval by Uy (in S’) of the passage of a rod at rest in S of length d (in
S) past the point A’. Then At = At'.

This formulation presents a simple assumption about the relation between the
space and time units in the two inertial frames involved.

Let us take for A and A’ the origins O and O’ of the frames. Let B be a point
at rest in S at a distance d from O and let At' be the time interval by Uy of the
passage of the rod OB past O’. Let B’ be a point at rest in S’ at a distance d in the
negative direction from O’ and let At be the time interval by Uy of the passage
of the rod O'B’ past O. The world-line Wg of B is = d with respect to K or
according to (7) ax’ + vyyt’ = d with respect to K’. Substituting here 2/ = 0 we
get the time At' = d/(v,7) by Ug for the passage of OB past O’. Similarly B’
has world-line 2’ = —d with respect to K’ or x — v, t = —d(a — v, 3) with respect
to K. Substituting 2 = 0 we obtain the time-interval At = d(« — v47)/v4 by the
clock Up for the passage of O'B’ past O. The comparison of At and At' gives the
following algebraical expression of the Relativity Principle:

(8) V(e —vif) =1
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Thus the transformation formulae obtain the form

r = ar’ +uvt, ¥ =y(x —vyt),
(9) , , or /
t = pa 4+t t = at — [z,

wherein «, § and 7 are related by means of (8).
Similarly, if O’ moves in the negative direction of the z-axes of S with velocity
v_, for the transformation formulae we get

r = ar’ —v_Fyt,

(10) e
wherein @, 3 and 7 are related by F(a +v_3) = 1.

Using (9) and (10) we shall derive now a general formula for the so-called round-
trip time dilation effect (cf. [1], p. 96). This formula will be independent of any of
the one-way velocity of light assumptions which are to be made later on.

Let A recede from O in the positive direction of S with constant velocity vy
and at some distance s from O pass the point B which approaches O moving in the
negative direction with constant velocity v_. The clocks U4 and Up read time zero
as they pass each other. When A and B pass (at event M — see Fig. 1) the clock
U, reads time t' = s/(vy7y). Suppose the time by Up is pre-set so that as A passes
B, Ujp reads the same time as U,4. We shall see what is the time read by Ug as B
passes O (at event V) and shall compare it with the time read by the clock Up.

Let S” be an imaginary frame of reference moving with B and K” be the corre-
sponding coordinate system. According to (10) the time by Ug is running by the
formula
(11) t" =at — Bz +a,

where a should be chosen so that the event M with its coordinates (s, s/v;) with
respect to K (see Fig. 1) should have coordinates (0, s/(v,7y)) with respect to K”.
Substituting these coordinates in (11) we get a = s(1/y — @ + v43)/v4. The event
N has coordinates (0,ty = s/vy + s/v_) with respect to K. Carrying out some
substitutions in (11) we get that at event N the clock Up reads t§, = s/(vi7y) +
s(v_7). The round-trip time-delation effect is given by

(12) r—%:<i—+id/(£+i>_ﬁﬂili

iy vyy U vy v_ ) vy +ol)’

which gives the retardation of the clock Ug with respect to the clock Ug.

We shall make use of this formula later on. It contains the undetermined pa-
rameters v and 7; however, the formula has the advantage of being derived before
any hypotheses about the one-way velocity of light have been made. Now we are
going to complete the determination of the parameters in (9) by considering some
velocity of light assumptions.
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4 The e-Lorentz Transformations

Next we give Winnie’s formulation of the principle of the constancy of the velocity
of light. (For a discussion of the physical bases of this formulation see [1].)

Round-trip Light Principle (RTLP). The average round-trip speed of any
light signal propagated (in vacuo) in a closed path is equal to the constant ¢ in all
inertial frames of reference.

According to this principle 1/ ¢ +1/ ¢= 2/c holds for the velocities of light in
both directions with respect to K and 1/ ¢ +1/ ¢'= 2/c holds with respect to K.
If we use Reichenbach’s notation t = T+ (1" — T'), where 0 < ¢ < 1 (see Fig. 2)
we get ¢= ¢/(2), ¢= ¢/(2 — 2¢) and analogically, ¢'= ¢/(2¢'), ¢'= ¢/(2 — 2¢).
The requirement that © =¢ ¢, 2/ =¢ ¢ and x = — ¢ t, 2’ = — ¢ t' should be
world-lines of one and the same signals with respect to K and K’ resp., yields by
means of (9) the relation o ¢ v,y =¢ (8 ¢ +7) and o ¢ —v,y =¢ (= ¢ +7).
Substituting here the expression for the velocities of light and solving for o and
B we get a = (2(1—¢e—¢&)vy/c+ 1)y and 8 = ¢ 2(2c(e — &) + 4e(1 — &)vy)y.
The substitution of these expressions in (8) and the assumption v > 0 determine 7.
Finally, the transformations (9) become

r = [201 —e—=&vy/e+ D' + v t]y,
(13) to= [c72(2e(e — &) +4e(1 - e)v)a’ + ]y,
7 o= 10— 2= vy /o) = (v /o)),

called by Winnie e-Lorentz transformations. As we mentioned in the introduction,
we shall call the model based on (13) e-STR.
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The coefficient of (10) can be determined in the same way. It turns out that
they can be obtained from the expressions for «, § and ~ after one formally replaces
there v, by (—v_). For example we have 7 = [(1 + (2 — 1)v_/c)? — (v_/c)? /2.

Our further aim is to apply the method of the coefficient k to e-STR.

5 The k-Calculus Approach to e-STR
Substituting ¢= ¢/(2¢) and c¢= ¢/(2 — 2¢) in (4) and (5) we get

(14) vy 1— k2 B k2 —1
¢ 20e+(1—-9)k2)  2(1—c+ek?)

and a similar expression for v_/c. For ¢ = 1/2 both these expressions yield equal
values for v, and v_. This value is exactly v (the STR velocity). Thus we get

v 11—k k-1

15 = = .
(15) c 1+k 14k

The above equality presents a simple relation between k, and k.. It can be
rewritten in the form

(16) kok, = 1.

As expected, relation (14) implies no restriction as regards ¢; it is easy to see
that (14) is algebraically equivalent to (16) (the €’s cancel). Thus between the
chronometry coefficients assigned to one moving object before and after its passing
the observer the simple relation (16) exists. This relation does not depend on the
conventional choice of € and hence can be regarded as synchrony-independent.

By excluding the coefficient k, (or k,) from (14) and (15) we get v, as a function
of v (similarly we get v_ from (5) and (15))

Ccv Ccv

1 -« e
(17) v c+v(2e —1) ! c—v(2e—1)

cf [1], p. 85.
In the same way we might present v and % as functions of v:

_ 1+ (2e — 1)v/c = 1— (2 — 1)1}/0‘

1—(v/c)? 1— (v/c)?

For v expressed by k, we get

(18)

_ 1+e(k?-1)
-

(19) v
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Using (17) and (18) we get for the round-trip time dilation effect (12) in e-STR

the expression r = /1 — (v/c)?, i. e. in e-STR the Einsteinian time dilation effect
holds and r is a synchrony-independent quantity.

Next we are going to show that the two definitions of chronometric motion are
equivalent in e-STR.

Consider a k-chronometric motion according to Definition 2. We shall show that
it is a k-chronometric motion according to Definition 1 (with the same chronometry
coefficient). Let the point A recede from O k-chronometrically. Then we have
T" = kT (see Fig. 2). As far as e-STR is concerned, the velocity of A is given by
(14). The event E of the reflection of the light-signal from A has coordinates (v.t,t)
with respect to S and (0,7”) with respect to S; S’ is the imaginary frame of reference
in which A is at rest. From v t =¢ (t — T) (see Fig. 2) and ¢= ¢/(2¢) we have
t =T/(1 —2evy/c). If we substitute here vy /c by (14), we get t = T(1 — & + ck?).
According to (13) the time interval 7" measured by U4 between the meeting with O
and the event E is 7" = t/~v. When we substitute here the obtained expression for ¢
and formula (19) for v we get 77 = kT, i. e. A moves k-chronometrically according
to Definition 1.

Conversely, let A move k-chronometrically according to Definition 1, i. e. (1)
holds. From vyt =¢ (T"” —t) and c¢= ¢(2 — 2¢) (using t = yT" and (19) we get
T" =~+T'(1+2(1 —¢)vy/c) = KT' = k*T and that proves the equivalency of the two
definitions in e-STR (the equivalency in STR follows as a special case).

The above considerations answer the question why the experiment E* (or E)
gives nothing as regards the determination of the one-way velocity of light.

Finally, we shall use the k-calculus approach to show that the so-called apparent
velocity [8] is another syncrony-independent quantity.

Let A be an object moving chronometrically as regards the observer O. Suppose
O is able to measure the distance to A only by the light signals received from A
(but is not able to dispatch signals). This distance we might call apparent distance
to A and shall denote it by 7.

Remark. An example of such a situation gives an observable spherical object A
whose radius R is known. Then the apparent distance T from O to A at a certain
instant ¢ by Up can be evaluated by means of the angle subtended by A at t. If
this angle is «(?), then the apparent distance to A clearly is Z(f) = Rcotg(«(t)/2).

The apparent velocity v can be defined as the rate of change of the apparent
distance T with respect to ¢; in our notations we have 7 = |Z(¢)/t| (see Fig. 3).

Assume that A moves in the positive direction, approaching O. We have then
for the apparent velocity
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or, after substituting ¢= ¢/(2¢),

v e e

T e/ @)t 1 2e(vy/e)
Using (17) and (14) we get

S l-wv/c 2k

v vie 1k
c

where k is the chronometry coefficient of A.

When A recedes we get similarly
B vy /e wfe k-1
S 14+2(1—¢e)vy /e 14uvfe 2k2

ol

In general, we can write v/c = |k? — 1|/(2k?*) and this relation shows that the
apparent velocity does not depend on . Thus, the apparent velocity is an example
of a synchrony-independent quantity, although its definition is based on a one-way
experiment.

6 The Relativity Principle and the Hypothesis of
Ritz

In this section we are studying a model based on the Relativity Principle (as formu-
lated in Section 3) and the Ritz hypothesis instead of on the RTLP. The k-calculus
approach turns to be very helpful in developing the consequences of these two prin-
ciples. The Ritz hypothesis on the propagation of light can be stated as follows:

Hypothesis of Ritz (HR). Any light signal propagates in vacuo with constant
velocity ¢ with respect to the emitting source.

More precisely, if A is an inertially moving (with respect to S) source and if S’ is
an imaginary frame of reference, in which A is at rest, then the signals emitted from
A in all directions have constant velocity ¢ with respect to S’. Needless to say, HR
is not consistent with RTLP. The RTLP, as given in [1], contains the assumption
that the velocity of light does not depend on the velocity of the source. In fact no
difference is made in e-STR whether a light signal is emitted (reflected) by a source
at rest in S or by a source at rest in S" — the velocity of the light signal is assumed
to depend only on the direction of its propagation.
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As it is known, the experiments performed by now cannot refute directly the
dependence of the one-way velocity of light on the velocity of the soure (in vacuo).
J. G. Fox [5, 6] has shown that the so-called extinction considerations require very
high vacuo for the crucial experiment (if such one exists) and that makes the task
technically difficult.

On the other hand, in accordance to the Ritz hypothesis we can weaken the RTLP
(retaining at the same time this part of its content which directly corresponds to
the physical experiments of Michelson-Morly type) to the following:

Weak Round-trip Light Principle (WRTLP). In any inertial frame of ref-
erence S the average round-trip speed of any light signal propagating (in vacuo) in
a closed path, the path being obtained by reflection of the signal from objects at
rest in S, is equal to the constant ¢ with respect to S.

It is easy to see that WRTLP follows directly from Ritz hypothesis. WRTLP
is weaker than RTLP, because there is no restriction in RTLP for the sources (or
the reflecting objects) to be at rest in the frame, in which the round-trip velocity is
determined. In other words WRTLP corresponds to the results of these experiments
of Michelson-Morly type, which have their reflecting mirrors at rest with respect to
the frame of reference involved. Clearly RTLP assumes more than these experiments
result in.

Our further aim is to develop the consequences of the Principle of Linearity,
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the Principle of Relativity and the hypothesis of Ritz. We shall denote by p-STR
the obtained model because, as it will turn out, this model contains an arbitrary
parameter p, and we shall consider this model as a form of the emission theory of
Ritz (see [5]).

Let S’ move with velocity u with respect to S in the positive direction (or with
velocity w in negative direction; we shall assume that v and w correspond to one
and the same chronometry coefficient k). Let us denote the velocities of the light
signals emitted by any source at rest in S’ by ¢, (or ¢,,) if propagating in positive
direction, and by ¢, (or ¢,,) if propagating in negative direction (all these velocities
are taken with respect to S). Denote respectively by ¢, ¢.,, ¢, and ¢., the values
of these velocities with respect to S’. According to HR we have then ¢,=¢, = ¢ and

—

cw:E:U: ¢ (in this section the notations u and w concern the concept of velocity as
it would be in p-STR).

Let two points A and B move chronometrically (according to Definition 2) in
opposite directions, passing each other at event (0,0) (see Fig. 4). Consider first the
situation after the meeting.

Using Reichenbach’s notations we have (according to Fig. 4)

(20) t:T—f-(S(T”—T), tlzT—f-(Sl(Tl”—T), O<(5,51 < 1.

Denote by u and w the velocities of A and B respectively. Next we shall demon-
strate that if the motions of A and B have one and the same chronometry coefficient
k, then v = w (which was not true in e-STR).

In fact, according to Definition 2 we have then T” = k?*T = T} and from (20)
follows that 0,(t —7T") = 6(t, — T'). We get from this equality and from ut = ¢(t —T)
and wt; = ¢(t; — T) that
(21) du(c —w) = ow(c—u).

The velocities ¢, and ¢, can be expresses as functions of 4, §; and ¢ (for example,
substitute T'=t — x/c and T" =t + x/ ¢, in (20) in order to get ¢,). We obtain
c,=(0(1=0))cand ¢,= (6;(1 —07))c. Substituting these values for ¢ and ¢ in (4)
and (5) and then the obtained expressions for u and w in (21) we get §; = 0. This
implies ¢,=¢, and u = w.

Further on we shall use the notations (1 —J)/0 = p and u = w = v, (which we
shall call p-STR velocity).

Consider now the situation before A and B pass each other. Replacing in (20)
§ by 0 and d; by 0; and using analogous considerations, we get again 0; = 6. We
shall denote ¢,=¢,= c¢/p, where p = (1 — §)/6. Formula (4) becomes then

2 2
(22) ﬁzl—ka:k‘r—l'
c  p+k2 p+k?
Using (15) we can express v, by v
U, 2u/c 2u/c

(23) ¢ 1+p+@-lufc 1+p—(p—1p/c
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The last two formulae present a relation between p and p which depend on v (or
on the chronometry coefficient). Equation (23) can be rewritten more simply as

(24) p—p=(p+p—2/c

We shall assume further on that the parameters p and p always satisfy (24).
A little algebra shows that the relation k,k. = 1 holds for all values of p and p
(satisfying (24)). Relation (24) can be also written as

p—l_l—l—v/c_k2

(25) p—1 1—wv/c 7

The last relation shows that either both p and p are > 1, or p,p < 1. This
implies that either §,0 > 1/2 or 6,6 < 1/2 (assuming that 6,6 < 1/2 means that
in p-STR the velocity of any light signal does not exceed ¢; in that case (25) gives
p=p=1).

Using the general approach outlined in Section 4, we can determine the coeffi-
cients of the transformation formulae in p-STR. According to (9) the velocities of
the light signals with respect to K and K’ are related as follows:

ac,—vy - o« ¢ v,y
y=gc, " y+pe,

Using C,= ¢/p, ¢u= ¢/p and HR (according to which ¢,=¢, = ¢) and solving
(26) for o and [ we get

(26) Cu=

oo 2t (p=D)y,/c _P—p+20pv/c
p+D ’ p+D

The Principle of Relativity (8) and the standard assumption v > 0 give for

(NI

1
2 - 2 2
27 ’y=<—_1+ p—P)v,/c— pp(v 02> :<—_1— v 02> .
@) 9= (S = Pufe— /) = (== w/e?
Thus the transformations (9) obtain the form
9 o
ptp

(28)

oo (PmeRmn/e s )
ptp c

wherein 7 is given by (27).
Equations (28) become the standard Lorentz transformations for p = 1.
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We can use (12) to evaluate the round-trip time dilation effect in p-STR. It is
easily seen that 7 = ; thus (12) gives

A (L_u - <vp/c>2>)1/2 -

This formula shows that for given velocity of the source the quantity r can be

arbitrary close to the Lorentz factor (/1 — (v/c)?; the only requirement is p (and
hence ) to be sufficiently close to 1. Hence it can be argued that the existing
experiments measuring time dilation of the life times of p-mesons disprove p-STR by
demonstrating a unique choice of 9. Let us note, however, that all the mathematical
speculations in this section are irrelevant if the considered propagation of light signals
takes place in a material medium (at rest with respect to the observer); the extinction
argument (see [5, 6]) implies then that at the instances of emission the source should
be regarded as at rest in relation to the medium. Therefore, we should have p =
p = 1, which leads immediately to STR.

In this section we have outlined an emission model based on the Relativity Prin-
ciple. It turns out that this model can be regarded as a generalization of STR. The
Ritz emission theory is usually regarded as diametrically opposed to Special Rela-
tivity Theory. The reason for this is that, speaking of Ritz emission theory, a theory
based on non-relativistic assumptions (such as the classical concept of simultaneity)
is meant, instead of a one based on the Principle of Relativity. While looking for
evidence against the emission theories, it might be recommended not to ignore the
fact that p-STR could be considered as a possible form of these theories.
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